
[Selvakumar et al., 3(5): May, 2014]   ISSN: 2277-9655 

                                                                                                 Scientific Journal Impact Factor: 3.449 
   (ISRA), Impact Factor: 1.852 

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology 

[224-227] 

 

IJESRT 
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH 

TECHNOLOGY 

A Survey of Benchmarking Techniques for  Network Performance 
A.Selvakumar*1, Surender Dhanasekaran2   

*1,2 Department of Electrical and Electronics, Vel-Tech Dr.RR & Dr.SR Technical University, Chennai-

62, India 

selva.shivayanama@gmail.com 

Abstract 
Ethernet implemented on PCI is now the dominant LAN technology in the world. Which is used for 

communication between computers, networks and industrial applications etc., the protocol is implemented on 

hardware platforms, operating systems and Ethernet cable. The benchmark testing comprises nodes and data 

sources, for data exchange among nodes, which measures the performance of PC control system. Data sources and 

consumers include time synchronization, hardware and software events broadcasting. A single network cable is used 

for exchange of status and control data among nodes. There is a requirement for analyzing and optimizing the data 

transfer rate with implementation of the protocol stack on hardware platforms with distances between nodes. To find 

transfer rate, bandwidth, jitter, Stack latency and round trip time delay. In this project, we are going to find the inter 

node round trip time bandwidth, stack latency and jitter on both real time and non real time environment and 

comparing the inter node bandwidth, round trip time, stack latency and jitter of real time environment by using 

various algorithms and methodologies. 

 

Keywords: Round Trip Time, Latency, Jitter, Bandwidth. 

      Introduction
PCs were basically designed for applications 

with non-real time responses. Operating Systems 

(OS) for PC do not exhibit deterministic response to 

real time events and data [1]. Most of the common 

OS are not pre-emptive. However, as per [1], 

Xenomai kernel for Linux OS is a better preemptive 

kernel, which provides deterministic real time 

response. Xenomai is an alternative to the proprietary 

real time operating system, because it extends 

GNU/Linux with real time performance [2]. The pre-

emptive kernel needs a better support from the 

system hardware, so that hard-real time interrupts are 

serviced within a given time-frame. PC based 

controllers require networked nodes for data 

acquisition, event monitoring and control. 

However, Xenomai is being updated by the 

open source community. The comparative study [3] 

of VxWorks, RTAI and Xenomai indicates that 

performance of Xenomai is acceptable for most 

applications. It is necessary to apply ADEOS patch 

for Xenomai. We have used standard open source 

patches available for Xenomai kernel. 

The main difference between RTOS and Non-RTOS 

is on their scheduling algorithm. Scheduling 

algorithm in Non- RTOS is based on tasks priority, 

but tends to take fairness as the priority to reach a 

high throughput [3]. RTOS utilizes scheduling 

algorithm which is based on the task priority strictly. 

No lower-priority task will be proceeding if there’s a 

higher-priority task in queue. 

 

Xenomai. The Xenomai project also uses Adeos as 

the micro-kernel, however in its standard version. 

The real-time core of the Xenomai is called Nucleus. 

It communicates directly with the Hardware 

Abstraction Layer2 [4]. The real- time tasks — 

similary to the RTAI — can be developed and 

executed in the kernel and user spaces. Version 2.3.3 

is currently available and it was used for testing 

purposes. Xenomai supports following hardware 

architectures: 

• x86 and x86 64 

• PowerPC and PowerPC 64 

• ARM (some subarchitectures) 

• IA64 

• Analog Devices Blackfin 

• MIPS (not distributed yet) 

• SH-4/SH-3 (not distributed yet) 

Xenomai implements a powerfull and 

convenient native interface [5]. This interface 

provides Nucleus functionality to the developer. Its 

big advantage is that it is used the same way in both 

http://www.ijesrt.com/


[Selvakumar et al., 3(5): May, 2014]   ISSN: 2277-9655 

                                                                                                 Scientific Journal Impact Factor: 3.449 
   (ISRA), Impact Factor: 1.852 

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology 

[224-227] 

 

kernel and user spaces. New, different interfaces can 

be easily developed. Many of them have been 

implemented to simplify a migration from the other 

real-time operating systems. These different 

interfaces are called skins. The implemented and 

supported skins are: 

• native 

• POSIX 

• pSOS+R 

• VxWorksR 

• VRTX R 

• uITRON 

• RTAI (only in the kernel space) 

The C and C++ (the user space only) 

languages can be used during development process. 

Xenomai and RTAI have been once developed as two 

different projects. Since then they have been merged 

into a one and then separated again. Nowadays they 

differ a lot despite common roots and similar 

architecture. The biggest adventage of Xenomai is 

the very simple and well defined interface. It is also 

published with the GPL license. More inforamtion 

about Xenomai can be found at the developer website 

[5].  

 

Background 
The aim of the reported work has been the 

evaluation of realtime Linux solutions for a possible 

replacement of VxWorks, currently in use at RFX-

mod. Based on the reported performance measures, 

we observe the following facts: 

The performance of the current Linux 2.6 

kernel is very good and may be acceptable in small, 

dedicated systems. This is however not the case for 

the feedback control system of RFXmod, where the 

involved control units need to handle high data 

throughput in I/0 and network communication. 

Both RTAI and Xenomai are worth of 

consideration. Xenomai proved to be slightly less 

performing than RTAI, mainly because of its layered 

approach, which introduces some overhead in 

interrupt management. On the other hand, Xenomai is 

better structured and is available for a larger number 

of platforms. Moreover, Xenomai provides a set of 

emulation layers which may prove useful when 

porting large systems. 

Compared to VxWorks, both RTAI and 

Xenomai can be less user friendly for software 

developers. Since real-time tasks are to be executed 

in kernel mode in order to achieve best performance, 

the programmer cannot rely on the system services 

normally available in user space and debugging 

becomes very difficult. It is however possible, for 

both Xenomai and RTAI, to let user processes 

become real time. Allowing the development of user 

processes for real-time applications simplifies the 

development of real-time systems and permits also 

IPC with standard Linux processes. Real-time user 

processes are managed by a dedicated scheduler, 

which works in conjunction with the Linux scheduler 

by stealing user processes when they request to 

become realtime. Unlike kernel processes, context 

switching for user processes requires the remapping 

of the Page Table, a potentially time consuming 

operation. For this reason we plan further tests in 

order to quantify the impact of the MMU remapping 

in context switching. 

The network performance represents a 

strong point in favour of the migration towards  

RTAI or Xenomai. UDP has been successfully used 

for real-time network communication, and RTnet 

proved to be a very performing solution, especially 

compared with the poor performance we experienced 

with the latest version of the VxWorks IP stack for 

the considered board. The best performance in RTnet 

is achieved without enabling the TDMA access 

discipline, which appears to be best suited to systems 

with a large number of access points (and therefore 

higher probability of access conflicts) but less 

stringent timing requirements. This is not the case of 

the RFX-mod experiment which involves less than 10 

control units. 

 

Benchmarking Techniques 
There are three metrics selected for 

benchmarking. Here are the three metrics and how to 

calculate value of each metric. 

 

A. Processing Time / Latency 

Latency in this case more appropriately 

referred as processing time, which means the time 

required to process a package since the package is 

read from client socket buffer to be sent through the 

socket receiver buffer. Processing time is calculated 

on the order of nanosecond. Processing time 

calculation is performed for 10,000 packets per 

connection. 

 

B. Jitter 

Jitter is a variation of the time required to 

process each received packet. Jitter is obtained by 

calculating the difference of processing time between 

current and previous packet. Jitter is calculated on the 

order of nanosecond. Similar to the calculation of 

processing time, jitter calculation is also performed 

for 10,000 packets per connection. 

 

 

http://www.ijesrt.com/


[Selvakumar et al., 3(5): May, 2014]   ISSN: 2277-9655 

                                                                                                 Scientific Journal Impact Factor: 3.449 
   (ISRA), Impact Factor: 1.852 

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology 

[224-227] 

 

C. Throughput 

Throughput is calculated by running the 

program for a period of 10 seconds and then recorded 

amount of packets successfully processed during that 

period. To get size of packet/second, then the amount 

of packets that were successfully processed divided 

by 10. In the calculation of throughput, we must 

consider steady state issue. Steady state is the state 

when program is not affected by initialization and 

closing program  Calculation of throughput is 

performed by turning on alarm seven times every 10 

seconds. Each time the alarm was on, it will record 

packet_counter value into array of throughput and 

then reset the value packet_counter. From all of 

seven values, first and last values were not 

considered because it is not a steady state. Second to 

sixth value is recorded as the value of throughput. 

 

D. Round Time Trip 

Round-trip time (RTT) is the length of time 

it takes for a signal to be sent plus the length of time 

it takes for an acknowledgment of that signal to be 

received. This time delay therefore consists of the 

propagation times between the two points of a signal. 

The round trip time varies from packet to packet 

 

E. Bandwidth 

Bandwidth is the data rate supported by a 

network connection or interface. One most 

commonly expresses bandwidth in terms of bits per 

second (bps). The term comes from the field of 

electrical engineering, where bandwidth represents 

the total distance or range between the highest and 

lowest signals on the communication channel (band). 

 

A complete review of benchmarking 

literature is well beyond the scope of this paper. Here 

we discuss some directly relevant prior work 

evaluating Linux and/or Xenomai systems. [5] 

compares RTAI, VxWorks, Xenomai, and stock 

Linux performance for use in a nuclear fusion 

application. They perform three different 

benchmarks. The first is directly comparable to our 

responsivity benchmark. The test system is required 

to change an output DAC line when an input ADC 

line changes. The metrics are latency from input to 

output, and latency jitter. The measurements are 

taken by oscilloscope applied to the lines. All 

implementations are kernel mode. All code runs on a 

Motorola MVME5500 (PowerPC architecture). The 

reported latencies range from 69.2μs (Vx- Works) to 

73.2μs (Xenomai); jitter is sub-1μs in all cases. 

Xenomai is outperformed by the stock Linux kernel 

(which is, in turn, outperformed by RTAI and 

VxWorks.) The paper does not report how many 

measurements were taken for each configuration. The 

system is unloaded for all reported numerical 

measurements, although the authors comment that 

Linux performance measures “hold only for a system 

which is not loaded, and soon decrease when the 

workload increases.” While the paper does not report 

how latency and jitter are calculated, the sub-1μs 

jitter values seem qualitatively different from the 

variations we observed in testing the BeagleBoard. 

As shown in Table 4, in our testing, the Xenomai 

kernel response implementation showed nearly a 

factor of 4 difference between median response (9μs) 

and slowest response (37μs.) Furthermore, note that 

while the Linux kernel does outperform the Xenomai 

kernel on a 95% basis in our results, the converse is 

true on a 100%-basis. Based on these distinctions, we 

suspect that the measurement methodology and 

sampling duration used in [6] have limited validity in 

deciding whether any of the measured systems can be 

used for 100%-hard nuclear fusion control. The 

second benchmark described in [7] is a similar 

latency test; however, the input thread notifies a 

second thread to perform the output write. The 

additional latency, compared with the first 

experiment, is determined to be the scheduling 

overhead, with a maximum of under 6μs on stock 

Linux. The third experiment involves separating the 

input and output functions onto separate computers; 

the input system sends a UDP packet to the output 

system over gigabit Ethernet. The latency reported 

ranges from 101μs on RTAI+RTnet to to 157μs on 

VxWorks. [8] extends and deepens the real-time 

networking comparisons.This paper compares a 

Xenomai userspace and an RTLinux Pro kernelspace 

query/response implementations. It reports that for a 

4-byte request/response, 

Xenomai has a 61μs latency while RTLinux 

Pro has a 58μs response. Jitter is not reported. [9] 

describes common sources of latency in Linux x86 

systems. It also includes a number of (selfmeasured) 

latency results based on outputs to one parallel port 

pin which is wired to another parallel port pin used 

for input. Latency is the time from when the system 

stimulates the output pin to when it handles an 

incoming interrupt from the input pin. All 

measurements are strictly reported against stock 

Linux; however, the computational load and 

hardware are varied, resulting in dramatically 

different responsivity histograms. [10], performed at 

the same institution two years later, is in some ways 

similar to our present work. It reports (self-measured) 

responsivity experiments run using a parallel-port 

loopback, as well as periodic activity tests with 

http://www.ijesrt.com/


[Selvakumar et al., 3(5): May, 2014]   ISSN: 2277-9655 

                                                                                                 Scientific Journal Impact Factor: 3.449 
   (ISRA), Impact Factor: 1.852 

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology 

[224-227] 

 

internal measurement. It reports results across a 

kernel and userspace implementations for Linux with 

various preemption patches, for RTAI, and for 

Xenomai. In general the trends are as expected. It is 

noteworthy, however, that CONFIG PREEMPT 

increases the average latency not just of stock Linux 

results, but also of Xenomai results; the authors 

discuss some possible causes. The measurements are 

taken over periods of 1 minute each, which the 

authors note is a brief enough period to put measured 

maximum values into question. 

 

Conclusion and Remarks 
The advanced real-time systems will possess 

capabilities for high-speed data processing and 

communication which will require very high time 

bound processing than what is available in state-of-

the-art systems.  This necessitates the need of 

improving the real-time Networking mechanisms in 

RTOS for our future need.  To cope with these 

challenges, Very high performance is necessary at all 

levels of implementation application level and system 

level.  In this paper we reviewed several 

Benchmarking techniques for measuring the Network 

performance of RTOS.  It is hoped that by providing 

insights into the Benchmarking techniques, this paper 

would help the researches in addressing the 

implementation challenges of Networking in RTOS 

for efficient Networking real-time systems of 

tomorrow. 

 

References 
[1] Barbalace, et al., ”Performance 

Comparison of VxWorks, Linux, RTAI and 

Xenomai in a Hard Real-Time Application”, 

IEEE TRANS.ON NUCLEAR SCIENCE,  

VOL.55, NO. 1, FEB.2008  

[2] Byoung Wook Choi,et al., ”Real-time 

control architecture using Xenomai for 

intelligent service robots in USN 

environments”, Intel Serv Robotics(2009) 

2:139-151 DOI 10.1007/s 11370-009-0040-

0 

[3] F. Leroux et al., “New Developments on 

Tore Supra Data Acquisition Units”, 

Proceedings of ICALEPCS, Grenoble, 

France, pp. 922-925, 2011.  

[4] Adeos Home Page, [Online]. 

htt://www.adeos.or 

[5] Xenomai Home Page, 

[Online].http://www.xenomai.org 

[6] Xenomai: Real-time framework for linux. 

http://www.xenomai.org 

[7] Real-time linux frequently asked 

questions.https://rt.wiki.kernel.org/index.ph

p/Frequently_Asked_Questions. 

[8] The real-time linux wiki. https://rt.wiki. 

kernel.org/index.php/Main_Page. 

[9] Philippe Gerum. Xenomai – Implementing a 

RTOS emulation framework on GNU/Linux, 

April 2004 

[10] N. Vun, H. F. Hor, and J. W. Chao. Real-

time enhancements for embedded linux. In 

ICPADS ’08: Proceedings of the 2008 14th 

IEEE International Conference on Parallel 

and Distributed Systems, pages 737–

740,Washington, DC, USA, 2008. IEEE 

Computer Society 

 

 

http://www.ijesrt.com/

